Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 11, 2026
- 
            The inflammasome is a multiprotein complex critical for the innate immune response to injury. Inflammasome activation initiates healthy wound healing, but comorbidities with poor healing, including diabetes, exhibit pathologic, sustained activation with delayed resolution that prevents healing progression. In prior work, we reported the allosteric P2X7 antagonist A438079 inhibits extracellular ATP-evoked NLRP3 signaling by preventing ion flux, mitochondrial reactive oxygen species generation, NLRP3 assembly, mature IL-1β release, and pyroptosis. However, the short half-lifein vivolimits clinical translation of this promising molecule. Here, we develop a controlled release scaffold to deliver A438079 as an inflammasome-modulating wound dressing for applications in poorly healing wounds. We fabricated and characterized tunable thickness, long-lasting silk fibroin dressings and evaluated A438079 loading and release kinetics. We characterized A438079-loaded silk dressingsin vitroby measuring IL-1β release and inflammasome assembly by perinuclear ASC speck formation. We further evaluated the performance of A438079-loaded silk dressings in a full-thickness model of wound healing in genetically diabetic mice and observed acceleration of wound closure by 10 days post-wounding with reduced levels of IL-1β at the wound edge. This work provides a proof-of-principle for translating pharmacologic inhibition of ATP-induced inflammation in diabetic wounds and represents a novel approach to therapeutically targeting a dysregulated mechanism in diabetic wound impairment.more » « less
- 
            Engineered three-dimensional (3D) cell culture models can accelerate drug discovery, and lead to new fundamental insights in cell–cell, cell–extracellular matrix (ECM), and cell–biomolecule interactions. Existing hydrogel or scaffold-based approaches for generating 3D tumor models do not possess significant tunability and possess limited scalability for high throughput drug screening. We have developed a new library of hydrogels, called Amikagels, which are derived from the crosslinking of amikacin hydrate (AH) and poly(ethylene glycol) diglycidyl ether (PEGDE). Here we describe the use of Amikagels for generating 3D tumor microenvironments (3DTMs) of breast cancer cells. Biological characteristics of these breast cancer 3DTMs, such as drug resistance and hypoxia were evaluated and compared to those of two-dimensional (2D) monolayer cultures. Estrogen receptor (ER) positive breast cancer 3DTMs formed on Amikagels were more dormant compared to their respective 2D monolayer cultures. Relative to their respective 2D cultures, breast cancer 3DTMs were resistant to cell death induced by mitoxantrone and doxorubicin, which are commonly used chemotherapeutic drugs in cancer, including breast cancer. The drug resistance seen in 3DTMs was correlated with hypoxia seen in these cultures but not in 2D monolayer cultures. Inhibition of Mucin 1 (MUC1), which is overexpressed in response to hypoxia, resulted in nearly complete cell death of 2D monolayer and 3DTMs of breast cancer. Combination of an ER stress inducer and MUC1 inhibition further enhanced cell death in 2D monolayer and 3DTMs. Taken together, this study shows that the Amikagel platform represents a novel technology for the generation of physiologically relevant 3DTMs in vitro and can serve as a platform to discover novel treatments for drug-resistant breast cancer.more » « less
- 
            Metabolites are not only involved in energy pathways but can also act as signaling molecules. Herein, we demonstrate that polyesters of alpha-ketoglutararte (paKG) can be generated by reacting aKG with aliphatic diols of different lengths, which release aKG in a sustained manner. paKG polymer-based microparticles generated via emulsion-evaporation technique lead to faster keratinocyte wound closures in a scratch assay test. Moreover, paKG microparticles also led to faster wound healing responses in an excisional wound model in live mice. Overall, this study shows that paKG MPs that release aKG in a sustained manner can be used to develop regenerative therapeutic responses.more » « less
- 
            Simultaneous delivery of small molecules and nucleic acids using a single vehicle can lead to novel combination treatments and multifunctional carriers for a variety of diseases. In this study, we report a novel library of aminoglycoside-derived lipopolymers nanoparticles (LPNs) for the simultaneous delivery of different molecular cargoes including nucleic acids and small-molecules. The LPN library was screened for transgene expression efficacy following delivery of plasmid DNA, and lead LPNs that showed high transgene expression efficacies were characterized using hydrodynamic size, zeta potential, 1 H NMR and FT-IR spectroscopy, and transmission electron microscopy. LPNs demonstrated significantly higher efficacies for transgene expression than 25 kDa polyethyleneamine (PEI) and lipofectamine, including in presence of serum. Self-assembly of these cationic lipopolymers into nanoparticles also facilitated the delivery of small molecule drugs ( e.g. doxorubicin) to cancer cells. LPNs were also employed for the simultaneous delivery of the small-molecule histone deacetylase (HDAC) inhibitor AR-42 together with plasmid DNA to cancer cells as a combination treatment approach for enhancing transgene expression. Taken together, our results indicate that aminoglycoside-derived LPNs are attractive vehicles for simultaneous delivery of imaging agents or chemotherapeutic drugs together with nucleic acids for different applications in medicine and biotechnology.more » « less
- 
            Abstract Synthetic materials that mimic the ability of natural occurring features to self‐actuate in response to different stimuli have wide applications in soft robotics, microdevices, drug delivery, regenerative medicine, and sensing. Here, unexpected and counter‐intuitive findings are presented in which a strongly polyelectrolytic hydrogel repels from strong polar solvents upon partial exposure (e.g., partial hydration by water). This repulsion drives the actuation and self‐folding of the gel, which results in rapid formation of different three‐dimensional shapes by simply placing the corresponding two‐dimensional films on water. A detailed investigation into the role of hydrogel chemistry, pH, and morphology on hydration‐triggered actuation behavior of the gels and their nanocomposites is described. Finally, a computational model is developed in order to further elucidate mechanisms of actuation. Modeling partial hydration as a repulsive driving force, it tracks the evolution of the shape of the thin film that results from restoring elastic forces. Taken together, the results indicate that an interplay between elastic and Coulombic repulsive forces leads to seemingly unexpected behavior of actuation of strongly polyelectrolytic gels away from polar solvents, leading to a novel and simple fabrication strategy for diverse 3D devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
